CD2 expression acts as a quantitative checkpoint for immunological synapse structure and T-cell activation.

Philippos Demetriou¹, Enas Abu-Shah^{1,2}, Sarah McCuaig¹, Viveka Mayya^{1,3}, Salvatore Valvo¹, Kseniya Korobchevskaya¹, Matthias Friedrich¹, Elizabeth Mann¹, Lennard YW Lee⁴, Thomas Starkey⁴, Mikhail A. Kutuzov², Jehan Afrose^{1,3,§}, Anastasios Siokis⁵, Oxford IBD Cohort Investigators⁷, Michael Meyer-Hermann^{5,6}, David Depoil^{1,3,#,*}, Michael L. Dustin^{1,3,*}.

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. CD8 exhaustion signature, CD2 gene expression and levels in CD4⁺ and CD8⁺ CRC TILs

The putative negative correlation of T cell exhaustion genesets and CD2 expression described in Figure 1 was then validated using the METALLIC colorectal cancer clinical cohort a) The correlation between exhausted CD8⁺ T-cell gene signature and CD2 expression is shown for (top) "exhausted vs effector CD8⁺ T cell gene signature" and (bottom) "exhausted vs naive CD8⁺ T cell gene signature". **b)** The gating strategy for looking at CD127, PD-1 profile of CD3+ TIL subsets. c) The mean number of CD2 molecules/cell, for CD4⁺ TIL subsets from Figure 1(b-c), is shown for each patient. Patients were sorted from highest to lowest CD2 expression of the CD127⁻PD-1⁺ CD8⁺ T-cell compartment. **d)** Comparison of CD2 levels (mean±S.D.) in CD127⁻PD-1⁺ CD8⁺ T-cells of Group A (4.8x10⁴±7.6x10³), 14 patients (from Figure 1, showing the CD2^{low} phenotype) and Group B (9.0x10⁴±1.5x10⁴), 5 patients CRC with CD2 levels detected in peripheral blood CD8⁺ T-cell of healthy individuals (naïve, $4.8 \times 10^4 \pm 8.9 \times 10^3$; memory, $7.6 \times 10^4 \pm 8.9 \times 10^3$). ****, p<0.0001; ***, p<0.006 with unpaired two-tailed Mann Whitney test. Error bars represent SEM. e) CD2 against PD-1 levels of CD127 PD-1 CD4 TILs from (c) are shown for each donor. Dotted line crossing x-axis (with grey rectangle) represents the average PD-1 levels (±SD) expressed in memory PD-1⁺ CD3⁺CD4⁺ T-cells found in peripheral blood of healthy controls. Dashed or dotted line crossing y-axis (with grey rectangle) represents the average CD2 levels (±SD) expressed in naive and memory CD3⁺CD4⁺ T-cells, respectively, found in peripheral blood of healthy individuals.

Supplementary Figure 2. A unique ring pattern, "corolla", formed by CD2-CD58 interactions in the IS.

a) Further examples of the CD2 and LFA-1 signal in fixed T:B conjugates as in Figure 1. Shown in 3D rendering (IMARIS software), are T:B cell conjugates (top panels) and 1 μm thick slice of the corresponding T:B cell interface shown in the bottom panels. Images were captured on an Airy-Scan Confocal Microscope (ZEISS). Representative images are shown from two independent experiments. Scale bar, 5 μm. b) Representative histograms showing the CD58 expression levels of the human CF996 EBV-transformed B cells (solid empty), human peripheral blood monocytes (light grey), *in vitro* differentiated immature monocyte-derived dendritic cells (dark grey) and *in vitro* maturate monocyte-derived dendritic cells (black). Dotted histogram represents isotype control stained cells. Scale bar, 5 μm.

Supplementary Figure 3. pMHC-induced CD2 corolla captures ligated CD28. 1G4⁺ TCR CD8⁺ T-cells incubated on ICAM-1 (200/μm²), NY-ESO-9V-peptide-loaded HLA-A2 (30/μm²), CD80 (200/μm²) with CD58 (200/μm²) reconstituted SLB and real-time imaged with TIRFM, 10-15 min after contact and/or fixed at 15 min of incubation. Fluorescently labelled streptavidin was used to track the biotinylated NY-ESO-9V-peptide-loaded MHC. A representative image from two independent experiments is shown. Scale bar, 5 μm.

Supplementary Figure 4. CD2 expression determines corolla formation.

a) The gating strategy, in PBMCs, to quantify the levels of surface CD2 in T-cell subsets from healthy individuals is shown. After gating on single and live cells, CD4⁺CD3⁺ (left) or CD8⁺CD3⁺ (right) cells were selected and divided into naïve

(CD62L*CD45RA*), central memory (CD62L*CD45RA*), effector memory (CD62L*CD45RA*) and effector memory that re-expressed CD45RA (CD62L*CD45RA*). b)

The gating strategy for determining transfected human CD2-levels in expanded AND

T-cells. c) The histograms show an example of AND T-cells transfected with different levels of human CD2 (hCD2FL; full length protein) and compared to CD2 levels found in human peripheral blood T-cells from healthy individuals. Control cells were stained untransfected AND T cells (empty solid line histogram). d) Transfected AND

T-cells from (c) after a 15 min incubation on ICAM-1 (200/μm²), MCC-I-E^k (30/μm²) and CD58 (200/μm²) reconstituted SLBs, fixed and imaged with TIRFM. The ICAM-1, CD2 and CD58 signals in the IS of a random selection of AND T-cells are shown for one representative of two such experiments. e) Same as in (d) but using AND T-cells transfected with hCD2TM (hCD2 lacking its cytoplasmic tail)

Supplementary Figure 5. CD127⁻PD-1⁺ CD8⁺ TILs from CRC patients are enriched in CD28⁻ TILs while CD127⁻PD-1⁺ CD4⁺ TILs are mainly CD28⁺.

a) (Left) Representative CD28 and PD-1 expression plots (and gating) in CD127⁻PD-1⁺ CD4⁺ from one CRC patient. (Right) The proportion of CD28 positive (CD28⁺) and CD28 negative (CD28⁻) T-cells present within the viable CD127⁻PD-1⁺ CD4⁺ TILs is shown for each CRC patient. b) (Left) Representative CD28 and PD-1 expression plots (and gating) in CD127⁻PD-1⁺ CD8⁺ from one CRC patient. (Right) The proportion of CD28 positive (CD28⁺) and CD28 negative (CD28⁻) T cells present within the viable CD127⁻PD-1⁺ CD8⁺ TILs is shown for each CRC patient.

Supplementary Movie 1 and 2 (connects to Figure 2)

Tracking of IS formation by a human T-cell incubated on ICAM1 ($200/\mu m^2$), anti-CD3 Fab ($30/\mu m^2$), CD58 ($200/\mu m^2$) reconstituted SLBs. Cells were imaged at 4s intervals with TIRFM. Scale bar

Supplementary Movie 3 (connects to Figure 3)

Tracking of IS formation by a human T-cell incubated on ICAM1 ($200/\mu m^2$), anti-CD3 Fab ($30/\mu m^2$), CD58 ($200/\mu m^2$), CD80 ($100/\mu m^2$) reconstituted SLBs. Cells were imaged at 4s intervals with TIRFM.

Supplementary Table 1a. Clinical characteristics of CRC patients assessed in this study.

ND	Ascending colon	Right	T2 N0 M0	П	83	CRC	14
ND	Caecum	Right	T2 N0 M0	M	82	CRC	13
pT4b,N0,L0,V0,R0	Transverse colon	Right	Т4	F	76	CRC	12
ND	Descending colon	Left	T3 N2 M0	F	55	CRC	11
pT3 pN0 Ly0 V1 R0. New small bowel dilatation and mild small bowel thickening.	Rectum below perit.reflexion	ND	T2 N0 M0	M	68	CRC	10
pT4b pN1a Ly1 V1 R0.	Sigmoid colon	Left	T4 N1 M0	M	84	CRC	9
pT2 pN0 Ly1 V0.	Rectum below perit.reflexion	ND	T2 N0 M0	F	75	CRC	8
pT3 pN0 Ly0 V0 R0. No metastatic disease.	Rectosigmoid colon	Left	T2 N0 M0	S	39	CRC	7
pT3 pN0 Ly0 V0 R0. No evidence of disease recurrence	Transverse colon	Right	Тх	M	71	CRC	6
pT3 pN0 Ly0 V0 R0. No evidence of disease recurrence.	Caecal cancer	Right	T3 N2 M0	Μ	66	CRC	5
pT3 pN2 Ly1 V1 R1. Further interval disease progression in multiple lung metastases.	Rectum below perit.reflexion	ND	0M 0N EL	Μ	65	CRC	4
ypT3 ypN1 Ly0 V1 R0. No evidence of local or distant tumour or nodal recurrence.	Rectosigmoid colon	Left	T2N0	П	75	CRC	ω
pT3 pN2 Ly0 V0 R0. No evidence of residual or recurrent disease.	Sigmoid colon	Left	T3 N0 M0	F	70	CRC	2
pT3 pN0 Ly0 V0 R0. No recurrent or metastatic disease is identified.	Ascending colon	Right	T4 N1 M0	M	84	CRC	1
Prognosis/recurrence?	ls it colon or rectal?	Tumour side (left or right side?	Specific Stage of disease	Gender		Type Age	Patient ID

Supplementary Table1a. ctd.

	•				Tumour side		Prognosis/recurrence?
Patient ID Type Age Gender	Type	Age	Gender	Stage of disease	(left or right side?	(left or right Is it colon or rectal? side?	
15	CRC 83	83	Μ	T2 N0 M0	Left	Sigmoid colon	ND
16	CRC 76	76	F	T2 N0 M0	Right	Caecum	ND
17	CRC	81	Μ	T3 N1 M0	Right	Ascending colon	ND
18	CRC 74	74	F	T3 N1 Mx	Right	Hepatic flexure tumour	ND
19	CRC 81	81	F	T2/3a N1 V0 M0.	ND	Rectum below perit.reflexion	ND

Supplementary Table 1b. Clinical characteristics of CRC patients assessed in this study.

Supplementary Table 1b. ctd.

Patient ID	Patient ID Genetic information
	Mutation detected in the BRAF gene (c.1799T>A, p.(Val600Glu), COSM476). Presence of BRAF
	p.(Val600Glu) in the context of loss of MLH1 (IHC) is suggestive,
14	although not conclusive, of a sporadic tumour (Molecular testing strategies for Lynch
	Syndrome in people with colorectal cancer. Mutation detected in the PIK3CA gene (c.263G>A,
	p.Arg88Gln), COSM746)
1	Mutation detected in the KRAS gene (c.35G>A, p.(Gly12Asp), COSM521). Mutation detected in
CT	the PIK3CA gene (c.1035T>A, p.(Asn345Lys), COSM754).
16	The tumour cells show positive immunostaining for MLH1, MSH2 and PMS2, but are
TO	immunonegative for MSH6, suggesting loss of expression.
	MMR Immunohistochemistry:
	MLH1: Absent
17	MSH2: Intact
	MSH6: Absent
	PMS2: Absent
10	The tumour cells are immunopositive for MSH2 and MSH6, but are negative for MLH1 and PMS2,
ОТ	suggesting loss of expression.
2	Mismatch repair immunostains show no loss of MLH1, PMS2, MSH2 and MSH6 NUCLEAR
ET	STAINING.

Supplementary Table 2. CD2 mean expression in natural T-cell subsets in peripheral blood from 12 healthy individuals.

T cell subset	Molecules/cell	(+/-)SD
Naïve CD4+	3.15E+04	4.44E+03
CM CD4+	5.22E+04	7.39E+03
EM CD4+	7.05E+04	1.23E+04
CD45RA+ EM CD4+	4.02E+04	1.34E+04
Naïve CD8+	4.79E+04	8.90E+03
CM CD8+	7.46E+04	7.36E+03
EM CD8+	7.79E+04	1.10E+04
CD45RA+ EM	5.62E+04	1.15E+04
pooled CD45RA- (CM and EM) CD4+	6.13E+04	9.34E+03
pooled CD45RA- (CM and EM) CD8+	7.63E+04	8.88E+03
PD-1+ CD8+ (6 healthy individuals)	7.78E+04	6.14E+03

CM, central memory; EM, effector memory.

Supplementary Table 3. CD2 mean expression in CD127±PD-1± TIL subsets from 19 CRC patients.

T cell subset	Molecules/cell	(+/-)SD
CD127 [†] PD-1 ⁻ CD4 [†]	4.85E+04	1.27E+04
CD127 [†] PD-1 [†] CD4 [†]	6.54E+04	1.50E+04
CD127 ⁻ PD-1 ⁺ CD4 ⁺	6.03E+04	1.59E+04
CD127PD-1 CD4	3.82E+04	7.10E+03
CD127 [†] PD-1 ⁻ CD8 [†]	5.51E+04	1.17E+04
CD127 [†] PD-1 [†] CD8 [†]	6.55E+04	1.86E+04
CD127 ⁻ PD-1 ⁺ CD8 ⁺	5.96E+04	2.11E+04
CD127 PD-1 CD8	4.54E+04	1.04E+04

Supplementary Table 4. PD-1 mean expression in natural T-cell subsets in peripheral blood from 12 healthy individuals.

T cell subset	Molecules/cell	(+/-)SD
CM CD4+	4.84E+03	1.57E+03
EM CD4+	5.77E+03	1.52E+03
CM CD8+	5.48E+03	1.28E+03
EM CD8+	6.36E+03	1.26E+03
pooled CD45RA- (CM and EM) CD4+	5.30E+03	1.53E+03
pooled CD45RA- (CM and EM) CD8+	5.92E+03	1.23E+03

CM, central memory; EM, effector memory.

Supplementary Table 5. PD-1 mean expression in CD127 PD-1 TIL subsets from 19 CRC patients.

T cell subset	Molecules/cell	(+/-)SD
CD127 ⁻ PD-1 ⁺ CD4 ⁺	1.36E+04	6.34E+03
CD127 ⁻ PD-1 ⁺ CD8 ⁺	1.45E+04	5.58E+03

Supplementary Table 6. CD58 mean expression in a human cell line and human primary myeloid cells from peripheral blood of two healthy individuals.

Cell type	CD58 molecules/cell	(+/-)SD
CF996 B cells line	8.98E+04	ND
Monocytes	5.30E+04	1.60E+03
Monocyted-derived DCs (immature)	6.33E+04	8.10E+03
Monocyted-derived DCs (mature)	1.15E+05	1.10E+04

Fig. S1. CD8 exhaustion signature, CD2 gene expression and levels in CD4⁺ and CD8⁺ CRC TILs.

Fig. S2. A unique ring pattern, "corolla", formed by CD2-CD58 interactions in the IS.

Fig. S3. pMHC-induced CD2 corolla captures ligated CD28

Fig. S4. CD2 expression levels determine corolla formation.

Fig. S5. CD127-PD-1+ CD8+ TILs from CRC patients are enriched in CD28- TILs while CD127-PD-1+ CD4+ TILs are mainly CD28+.

